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Zero Dimensions 

It has been suggested that space-time may be intrinsically not continuous, but 
discrete. Here we review some topological notions of discrete manifolds, in 
particular ones made out of finite number of points, and discuss the possibilities 
for statistics in such spaces. 

1. INTRODUCTION 

One of the most basic assumptions of disciplines such as classical and 
quantum mechanics and general relativity is that space-time is continuous, 
and therefore it makes sense to consider derivatives with respect to space or 
time coordinates. This assumption, however, has been challenged recently 
by developments in quantum gravity, among others, where space-time may 
be considered continuous only over large lengths with respect to the Planck 
scale, because it is essentially discrete. In order to avoid, for instance, 
infinite black hole entropy, one has to define a minimum length, that is, a 
minimum distance between two discrete points. Subsequently, the volume 
of a finite region of space-time is proportional to the number of points in 
this region, and this number is thus finite. 

In a recent paper, Sorkin (1991) discussed possible topologies for such 
spaces, and showed that even though they are discrete, they may possess 
nontrivial homotopy groups. In Section 2 here, we briefly review some of 
his work, in order to find some general rules in Section 3. In Section 4 we 
discuss the problem of statistics in finite spaces, while in Section 5 we 
conclude by mentioning some open questions. 
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2. T O P O L O G Y  FOR FINITE SPACES 

2.1. General Notions of Topology for Partially Ordered Sets 

Let S be any set, finite or infinite. We say that a topology is defined on 
S, once we are provided with a collection J of subsets of S, satisfying the 
following: 

(i) ~ ,  Se~" .  
(ii) The union of  any number of elements of  5 ,  finite or infinite, 

belongs to ~-. 
(iii) The intersection of anyfinite number of elements of ~ belongs to 

y-. 

The elements of  such a collection ~ are called open sets, and once the 
open subsets of  a set S are given, we are able to define the notion of  
continuity and processed to find the topological properties of  S. It is 
therefore obvious that these properties do not depend only on the set S 
itself, but also on the topology defined on it. 

Now let x be any element of  S. Let A(x) be the intersection of all open 
sets to which x belongs: 

A(x) = 0{.4 eer :  x~A} (2.1) 

This set is called the smallest neighborhood of x. For finite spaces A(x) is 
obviously open. This need not be the case, however, for infinite spaces; for 
example, in a Euclidean space with the usual topology, A(x) = {x}, which 
is not open. 

We are now going to provide S with the following partial order: 

x - ~ y  r x e A ( y )  (2.2) 

While (2.2) guarantees that x ~ x  and x - ~ y  ^ y ~ z = , x  ~ z ,  it is possible 
that one may have x--*y and y--*x for x ~ y .  In order to avoid such a 
situation, we identify any such elements. In other words, the partial 
ordering is defined not on S, but on the coset S / ~ ,  where by x ~ y we 
mean x ~ y ^ y ~ x. 

Conversely, once a set S admits a partial order ~ ,  one can define a 
topology on it as follows. A set is open iff it can be written as a union of 
(zero, one, or more) sets A(x) --- {yeS:  y ~ x } .  

2.2. Topological Properties of  Finite Spaces 

Let F = {xt, x2 . . . .  , Xn, n ~N} be a finite set partially ordered by some 
relation ~ .  By applying the technique mentioned in the end of  Section 2.1 
we can define a topology on F. Schematically this can be shown by a 
diagram such as the one shown in Fig. 1, where x~, x2 . . . . .  x, are the 
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elements of  F, and the partial order is the following: if xi is directly linked 
to xj (i.e., there is no xk between them) and xj is placed above xi, then 
xi ~ xj. Obviously xg --* xj and xj --* xk implies x; ~ xk. Diagrams such as the 
ones shown in Fig. 1, which uniquely define a topology on a finite set, are 
called Hasse diagrams. For  such a topology one may easily check that an 
open set consists of  a number of  elements xa, Xb, �9 �9 �9 X~, and all elements 
Xm for which x~ ~ Xm for at least one i ~ {a, b . . . .  , l}. 

Once a topology is defined on a finite space, one would be interested 
first to check if this space is connected, and then to find the homotopy 
groups. Obviously under the usual topology defined in continuous spaces a 
finite space is disconnected, since there is no continuous path connecting 
any two distinct elements, and thus all homotopy groups are trivial. This 
need not be the case here, however, for the topology defined in this paper. 
As Sorkin (1991) has shown, for a space consisting of  four points whose 
Hasse diagram is the one shown in Fig. 2, l e t f ( t )  be the following mapping 
from F to $1: 

I 
x3 if t~{0, 1} 

x~ if 0 < t < � 8 9  
f ( x ) =  x4 if t = � 8 9  (2.3) 

x2 if l < t < l  

One can check that for any open set u ~ S 1, f - l ( u )  is open in F, and 
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therefore f ( t )  is a continuous function, and can therefore be considered as 
a loop in F. This loop, however, cannot be continuously deformed to 
identity, and thus the fundamental group n~ (F) is not trivial. We will show 
later that in fact it is Z. 

In Section 3 we continue this discussion in order to find the general 
rules for the connectedness and the first homotopy (fundamental) group of  
a finite set. 

3. CONTINUITY, CONNECTEDNESS,  AND H O M O T O P Y  GROUPS 

3.1. Continuity 

Let f be a function mapping a set S~ to a set $2. The function f is 
called continuous iff its inverse, f - l ,  maps every open subset of  $2 to an 
open subset of $1. In particular, if $2 = {x~, x2, . . . ,  x, } is a finite partially 
ordered set with a topology described on Section 2, this amounts to the 
following. 

Let Ag ___ $1 be the set {s ~ S~ :f(s) = xi }, and A ( x g )  = { x j  ~ $2: x s ~ xg ) = 

{ x , ,  Xb, . � 9  X;}. Then a function f is continuous iff A a  u A b  W" �9 ' ~ Ag is 
open Vx; e $2. 

3.2. Connectedness 

Let now S 1 = [0, 1] = { x ~ r :  0 < x < 1} having the usual topology, and 
f a function mapping S~ to a finite set F. We are interested in finding a 
criterion that will enable us to find whether f is continuous, and once this 
is known, whether F is connected, and if not which are its connected 
components. 
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A function f m a p p i n g  [0, 1] to F may be written in general as follows: 

xi~ if 

xi2 if 

f ( t )  . . . . . . .  

xir _ 1 if 
x;~ if 

O < t < t ~  

tl < t < t 2  

t ~ _ 2 < t  < t ~ _ l  

t r _ l < t < l  

(3.1) 

while f (0 )  = Xjo,f(1 ) = xjr, andf( t~)  = xjk, where 1 < k < r - 1. The points 
x i ~ , . . . ,  x;,, Xjo . . . . .  xjr need not be distinct, and r need not be finite. 

Let now x a ~ F  be an element at the "bo t t om"  of  the Hasse diagram, 
which means that there is no i r a such that xi ~ xa. According to what we 
have already shown, {x~} is an open set. Then in order for f to be 
continuous, A~ = f - l ( x a )  must be open, and thus x~-~  xjk unless xek + 1 = 
x~, = Xa, that is, unless xek + l, x~k ~ xJk for xj~ = Xa. 

Let now Xb be the element "immediately above" x~, that is, xa ~ x b  

and there is no i ~ a, b such that x~ ~ X b .  Now {Xb } is not open, but 
{Xa, Xb } is, and thus if f is continuous, A~ • Ab is open. Therefore xb can be 
equal to xjk only if x,.,+~ and xik are either x~ or xb, in which case 
x~ k + ,, xek ~ xj~. Similarly, one can show by induction that if f is continu- 
ous, then Vn: xik + 1, xik ~ x j  . 

Therefore xm and xn belong to the same connected component  of  F iff 
it is possible to find a series of  points Xp, X q , . . . , x ,  such that 
X m ~ X p ~ X q ~ - * " ' ~ x , ~ - * x , o  where here by x ~ y  we mean 
x ~ y  v y ~ x. 2 Schematically, two elements belong to the same connected 
component  if there is a continuous line on the Hasse diagram, not 
necessarily straight, linking these two points. Therefore, if the Hasse 
diagram is connected, the corresponding partially ordered set is connected, 
too; if not, each connected component  of  the Hasse diagram corresponds 
to a connected component  of  the set (see Fig. 3). 

C o n n e c t e d  S e t  D i s c o n n e c t e d  S e t  

Fig. 3. 

2There is an alternative proof of this statement in Stong (1966). 
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3.3. Fundamental Groups 

Let l be a function mapping S 1 to F. If l is continuous, it is called a 
loop, and the point l(0) = 1(1) is called the base point. 

Two loops l and l' that have the same base point are called homotopic  
and belong to the same (first) homotopy class iff they can be continuously 
deformed to each other. It is well known that the set of homotopy classes 
forms a group, which is called the f u n d a m e n t a l  group. 

Now let l be a loop whose base point is Xjo. According to what we said 
in Sections 3.1 and 3.2, if l is the loop shown in Fig. 4, the following 
relations should be valid: 

x q ,  xi2 "-* xj~, xi2, xz~ ~ xj2 . . . .  , x#,  x q  ~ Xjo (3.2) 

In order for l to be trivial, one must be able to continuously deform it to 
the constant loop f ( t )  = Xjo Vt ~ S ~. One might attempt such a deformation 
as follows. 

First one could "expand" the area "occupied" by xj0 . . . . .  xj, _ t from 
a single point to a larger and larger arc, at the expense of their "neighbors" 
x,. . . . . .  xi .  When the latter are "squeezed out," one might go on to 
eliminate the points xj~ . . . .  , x j ,_  1, until finally the whole circle "belongs" 
to Xso. 

Such a deformation, however, is not always continuous. The first step, 
for example, is not continuous unless either xj ,_,-- , ,xjs  or xj, ~xjs_~. 
Similarly the second step may not be permitted, unless appropriate rela- 
tions among the xj are satisfied. 

• 

• X 

J j~ 

• 
' i 3 

Fig. 4. 



Topology and Statistics in Zero Dimensions 541 

The general rule could be stated as follows. Let xa "occupy" an area 
between Xa and Xc, as shown in Fig. 5. One can continuously increase the 
areas "occupied" by xa and xc at the expense of  Xb. In order, however, to 
be able to "throw away" xb through a continuous deformation, one must 
have either x,, ~ Xc or xc ~ x , .  Since the loop we began with is a continuous 

• 

• 
a 

• 

Fig. 5. 
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function, we already know that X a - ' ~  X a V X b " ' + X a ,  a n d  x b - . ~ x  c V X c "-~ X b . 

Therefore the "elimination" of Xb is possible only if the triad of (x,,, Xb, Xc) 
is totally ordered. 

Therefore a loop is trivial iff it can be deformed to the constant loop 
by a series of steps like the ones described above. It may be interesting to 
notice that this is equivalent to saying that a loop is trivial iff the 
corresponding loop in the Hasse diagram is trivial, where, however, we 
have to assume that diagonal links do not " touch" and totally ordered 
triads are considered "aligned." Therefore a partially ordered finite set has 
the same fundamental group with a corresponding Hasse diagram. 

Let us discuss now some specific examples, which are illustrated in Fig. 
6. First, let the finite set F = {x~ } contain just one point. It is obvious that 
the only possible loop is the constant one, and thus the fundamental group 
is trivial. 

For F = {xl, x2} there are two possible partial orderings: 
(a) The one for which xl and x2 are not related, and thus F is 

disconnected. In this case the only possible loops are the two constant ones 
f ( t )  = xl and f(t)  = x 2 .  

(b) The one for which x~ ~ x2. In addition to the constant loops, one 
may also have loops such as the one shown in Fig. 7, where all "boundary" 
points are "occupied" by x2. One can easily see that all such loops are 
trivial. (The case x2--*x~ yields, of course, exactly the same results.) 

For F =  {xl, x2,%} it is possible to have two or three distinct 
connected components, but such cases can be reduced to the ones discussed 

F = [ x 

F = [ x 

F = { x I 

, x 
2 

X 2 , X 3 } 

X 

a) 

X 
2 

b) 

Fig. 6. 

I - - , / /% • X 
3 

X I  • • X3 
a) b) c) 
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X 1 

X 2 

/ x 2 

1 

Fig. 7. 

above. We are thus going to focus on the case where F is connected, for 
which there are essentially three possibilities: 

(a) xl ~ x2 ~ x3 (total ordering). 
(b) x2 ~ x l  and x2 ~ x3.  

(c) x l  ~ x2 and x3--* x2.  

The fundamental group for (a) is obviously trivial. For (b) and (c) one 
may continuously eliminate the areas "occupied" by xl and x3, until the 
whole circle "belongs" to x2, as shown in Fig. 8: (We have assumed above 
that x2 is the base point; this is irrelevant, however, since the fundamental 
group does not depend on the base point.) 

Therefore for F containing one, two, or three points all loops are 
trivial and thus n~ (F) = e. 

Let now F =  {Xl, x2, x3, x4} contain four points and be connected. 
Then there are ten possible orderings which are shown in Fig. 9. One can 
see that the first nine possibilities allow for only trivial loops; the last one, 
however, which we already mentioned in Section 2 and has been discussed 
by Sorkin (1991), allows for the nontrivial loop given by (2.3). According 
to the rules we already gave in this subsection, not only this loop, but all 
(nonzero) powers of this loop are nontrivial, and thus rq (F) = Z. This is 
not surprising, since the Hasse diagram in this case is a circle (we recall 
that the diagonals do not " touch" each other) and it is well known that the 
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X X 3 

X X 
4 

X x 

x I X I x 2 

a) b) c) d) e) 

X I X 2 X 3 X I X X X X 
i 2 i 2 

• 

f )  g )  h )  t )  j )  

Fig. 9. 

fundamental group of a circle is Z. What may seem surprising, in fact, is 
our statement that the fundamental group of the ninth case is trivial instead 
of  Z, since from a first look, its Hasse diagram looks like a circle, too; one 
should notice, however, that even though, for the sake of clarity, we have 
not drawn the four points on the same line, indeed they should be 
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considered collinear since the triads (x, x2, x4) and (xl, x3, x4) are totally 
ordered. 

One may similarly proceed for spaces containing five or more points; 
although the number of  possible topologies increases very rapidly and in 
each case one has to be very careful to avoid overcounting or undercount- 
ing, the same rules apply and in principle it is always possible to find the 
fundamental group. 

3.4. Higher Homotopy Groups 

Having discussed the fundamental group of  finite sets, one may 
proceed along the same lines to see what happens for the second homotopy 
group. Unfortunately we were not able to find a simple rule like the one we 
gave for the fundamental group; we were only able to show that one needs 
a minimum of  six points ordered as shown in Fig. 10 in order to have a 
nontrivial mapping from S 2 to F. The generator of  the second homotopy 
group Z of  Fig. 10 is one mapping each of  the six points to a face of a die, 
i.e., xi and x7 _ ,- are mapped to opposite faces. An edge joining faces xi and 
xj, where xi ~ xj, is mapped to xj ,  and a vertex joining x~, xj, and Xk, where 
x~ ~ x j  ~ Xk, is mapped to xk. 

One can continue the same way for higher homotopy groups; in 
accordance with Sorkin (1991), one needs a minimum of  2n + 2 points 
ordered as in Fig. 11 in order to get a nontrivial mapping from S n to F, and 
thus in order to have nontrivial 7t.(F). 

f 

x 1 

X 4 

X 5 

g6 

r 
•  

Fig. 10. 
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I 

Fig. 11. 

4. STATISTICS IN FINITE SPACES 

4.1. A Brief  Review on Statistics 

While the study of finite spaces is an interesting subject on its own 
merit, it is more relevant to physics to discuss what happens when actual 
particles are placed on such manifolds. In this section we focus on the 
possibilities for statistics which arise when two or more identical particles 
are placed in a finite space. 
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Let F be a finite space on which we place two identical particles. As is 
well known from quantum mechanics, identical particles are considered 
indistinguishable. In addition, following an assumption valid for continu- 
ous spaces, one is not allowed to place two distinct particles on the same 
point of  F. Therefore while the physical space is F, the configuration space 
is (F x F\F)/Z2, that is, 

Q={(xi ,  xj):xi, xj~F, x i ~ x i  , (xi, x j )=(xj ,  xi)} (4.1) 

It is also known that while the observables are functions on the configura- 
tion space Q, the wave function is not on Q, but on its universal cover Q. 
It has been shown that this implies the existence of  n possibilities for 
quantization for each n-dimensional representation of rq (Q). This was in 
fact our motivation in studying the fundamental groups of finite spaces in 
Section 3, and of the configuration space in this section. 

In addition, once a particular representation is chosen, it maps the 
exchange, which is of  course a loop on Q, to some unitary matrix. This 
matrix characterizes the statistics of a physical system, and thus the 
knowledge of rq (Q) enables us to find the possibilities for statistics) 

4.2. Statistics for a Few Simple Cases 

Since the two identical particles are not allowed to be on the same 
point, there is no need to consider the case F = {xl }. 

Let F =  {Xl, x2}. The configuration space of  F consists of just one 
point, where one particle is on Xl and the other on x2. Therefore the only 
possible loop is the constant one, and this is true for both possible 
topologies of  F. 

While it may not be relevant for the problem of statistics, one might 
ask what would happen if the two particles were distinguishable. In such a 
case one might consider an exchange process where the first particle would 
be located at Xl for 0-< t < t o and at x 2 for to < t -< 1, and the second 
conversely. Such a process is not a loop, of course, in the configuration 
space of distinguishable particles. In fact, it is not even a (continuous) path, 
since in order for the trajectories of both particles to be continuous, one 
requires both Xl ~ x 2  and x2 ~x~ ,  which, as mentioned in Section 2, is 
forbidden. 

We now move on to F = {xl, xz, x3 }. It is fairly obvious that unless we 
consider a total ordering x~ ~ x:  ~ x3, no exchange is allowed and thus the 
question of  statistics is meaningless. When Xl ---, x2 --, x3, however, one may 
perform exchanges such as the ones shown in Fig. 12, where the trajectory 

3A detailed review of quantum statistics can be found, e.g., in Balachandran (1991) or Sorkin 
(1986). 
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X 2 x~ X I x 2 x i 
[ ] ] 

t=O t=l t=O t=l 

[ [ ] 
x I x 2 x I x 3 x 2 

Fig. 12. 

of the first particle is shown at the top and that of the second particle at the 
bottom (we will use this convention for the next figures as well). These 
loops are of course nontrivial, since the trajectory of each particle is not 
closed and thus cannot be shrunk to identity. In Fig. 13 we show the 
product of these two loops, which can be shown to be trivial as follows. 
First one eliminates xl from the trajectory of the first particle, then x2 from 
the trajectory of the second particle, and finally x3 from the trajectory of 
the first. In Fig. 14 we show the square of one of the loops, and by 
exhausting all possible deformations one can see that none of the interme- 
diate segments may be eliminated without destroying the continuity of the 
whole process, or without passing through a stage where the two particles 
are placed on the same point, and thus this loop is also nontrivial. By 
induction it can be shown that none of the nonzero powers of the loops of 
Fig. 12 is trivial. Therefore nl (F) = Z, which is similar to the case of two 
points on a plane, and this result allows for fractional statistics for a set of 
three totally ordered points. 

One might be tempted to believe that each triad of totally ordered 
points contributes a factor of Z to x l (F )  when F contains four or more 
points; these factors may not be distinct, however, and may not even be Z, 
as one can show for a set of four totally ordered points. When looking at 
Fig. 15 one can see, for example, that F contains four distinct triads of 

X 2 '[ X~ ] x I [ X~ ] xi 

t=O t=l 

[ ] 
X X X 

t 2 I 

Fig. 13. 



Topology and Statistics in Zero Dimensions 

X 2 X 3 [ X I [ X 2 

549 

t=O t = l  

X 
1 

X 
2 

Fig. 14. 

] 
x x 

3 1 

x4 

t=o 

t=o 

X 1 X 3 X 2 [ ] 

t=l 

] 
x 2 x I 

,I, 
X I r X3r X4  X3~ X~ 

k L J 4 

t= l  

] 
X 2 X I 

$ 
Xl  [ X4  ] x 2  

t=O t=l  

] 
X 2 X I 

Fig. 15. 

x~[ x3] x2]x ~ 

x]'x[x]x 
2 I 3 2 

$ 
Xl[ x4 ] x2 ] x l  

t=O t=l 

] [ ] 
X 2 X 1 X 3 X 2 

$ 
xl[ x4 ] x~ 

t=O t=l  
[ ] 

X 2 7- 3 X 2 

J. 
X I 

t=o t=l  
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totally ordered points; on the same figure, however, we show that the 
exchange that uses the triad (xl, x2, x3) is homotopic to the one that uses 
the triad (xl, x2, x4). We also show that their squares are trivial, and thus 
zq (Q) = Z2, which means that only Bose and Fermi statistics are possible. 

One does not need, on the other side, to have three at least totally 
ordered points in order to get a nontrivial fundamental group. Let 
F = {Xl, x2, x3, x4 } and let its partial ordering be the one shown in Fig. 2. 
In Fig. 16 we show a nontrivial exchange, and in Fig. 17 its square, which 
is also nontrivial, since the trajectories of  both particles are nontrivial. 
Similarly all powers of this exchange are nontrivial, and thus z q ( F ) =  Z, 
which allows for fractional statistics, even though F contains no totally 
ordered triads. 

By studying other such examples one may see the following pattern 
emerging. One begins with the Hasse diagram, where once more diagonals 
do not " touch"  each other. Then one looks for totally ordered n-ads 
xil, x i : , . . . ,  x~,, and adds all possible lines linking xi~ to X~b that do not 
already appear on the Hasse diagram in such a way that no two such links 
are collinear, no three are coplanar, etc. Finally, one "fills" the interiors of  
all triangles whose vertices are totally ordered triads. The possibilities for 
statistics on F are the same with the ones on the space formed the way 

x x 2 xl [ 4 ] 

t=O t = l  

[ ] 
x 2 x 3 Xl 

Fig. 16. 

x ~ [  x 4 ] x 2 [ x 3 ] x~ 

t=O t=l 

[ ] [ ] 
X X X X X 

2 3 1 4 2 

Fig. 17. 
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described above, where now instead of the topology derived from the 
partial ordering we use the usual one. 

It is interesting to notice that if F contains no totally ordered tetrads 
and no triads have two points in common, one does not need to "fill" the 
triangles arising from the totally ordered triads, and thus the problem is 
reduced to the study of  one-dimensional systems (not necessarily mani- 
folds). Statistics on such networks have already been studied in the 
literature (Balachandran and Ercolessi, 1991). 

If  one is interested in the situation of  three or more identical particles, 
the situation is even more involved. In general, for a system of n identical 
particles exchanges are always possible if F contains at least n + 1 totally 
ordered points, but may not be possible otherwise. For  the simple case 
where F is totally ordered containing m points (m > n), the fundamental 
group can be shown to be equal to the braid group Bn for m = n § 1, and 
the permutation group Sn if m > n § 1. It should be noted that these are 
also the fundamental groups of  the configuration spaces of n points on R 2 
and R k, where k > 2, respectively. 

5. CONCLUSION 

We have discussed some of the topological properties of finite partially 
ordered sets. It would be interesting if we could relate these properties to 
the ones of  appropriate continuous spaces. It does not appear, for example, 
to be a mere coincidence that the statistics possible on a totally ordered set 
is exactly the same as that on R 2 or R k. 

When there is only one particle present, and thus the configuration 
space is identical to the physical one, Sorkin has argued that one may 
substitute a continuous space by a family of  appropriate finite sets of open 
coverings, and get the same topological properties. For  the problem of  
statistics, however, when one needs the presence of two or more identical 
particles, such a substitution cannot be taken for granted. One should 
notice, for example, that while two particles are forbidden to be located at 
the same point of  a finite space, they are allowed to be inside an area of the 
continuous space which corresponds to a single point of  the finite one. 

We thus leave this question unresolved, and hope to return to it in the 
future. 
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